Abstract

This paper is aimed at the development of a biosensor for direct detection of Hepatitis C virus (HCV) surface antigen: envelope protein (E2). A recombinant LEL fragment of biological cell receptor CD81 and two short synthetic peptides imitating the fragment of LEL sequence of CD81 (linear and loop-like peptides) capable of specific binding to E2 were tested as molecular recognition elements of the biosensor. For this purpose the selected ligands were immobilized to the surface of a screen-printed electrode utilized as an electrochemical sensor platform. The immobilization parameters such as the ligand concentration and the immobilization time were carefully optimized for each ligand. Differential pulse voltammetry used to evaluate quantitatively binding of E2 to the ligands revealed their similar binding affinity towards E2. Thus, the linear peptide was selected as a less expensive and easily prepared ligand for the HCV biosensor preparation. The resulting HCV biosensor demonstrated selectivity towards E2 in the presence of interfering protein, conalbumin. Moreover, it was found that the prepared biosensor effectively detected E2 bound to hepatitis C virus-mimetic particles (HC VMPs) at LOD value of 2.1∙10−5 mg/mL both in 0.01 M PBS solution (pH 7.4) and in simulated blood plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.