Abstract

The first, fully integrated, planar fiber optic platform with spectroelectrochemical capabilities, termed the electroactive fiber optic chip (EA-FOC) is presented here. Spectroelectrochemical techniques provide complementary optical and electrochemical data which are important for applications ranging from thin film characterization to advanced sensor design. To create the EA-FOC a side-polished fiber optic is coated with a thin film of indium-tin oxide (ITO) as the working electrode and used to probe electrochemically-driven changes in absorbance for surface-confined redox species. A sensitivity enhancement of approximately 40 times higher than a transmission measurement is demonstrated for this first-generation EA-FOC, using the methylene blue (MB) redox couple, cycling between the visibly colored, oxidized form of MB, and its leuco (transparent) reduced form. Additionally, the EA-FOC is used to probe the redox spectroelectrochemistry of an electrodeposited thin film, about 0.3% of a monolayer, of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Unlike other waveguide formats, the EA-FOC offers an ease of use due to its ability to simply couple to light sources and detectors through standard fiber connectors to create a sensitive planar waveguide spectroelectrochemical platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.