Abstract

The practical application of optoelectronic artificial synapses in neuromorphic visual systems is still hindered by their limited functionality, reliability and the challenge of mass production. Here, an electro-photo-sensitive synapse based on a highly reliable amorphous InGaZnO thin-film transistor is demonstrated. Not only does the synapse respond to electrical voltage spikes due to charge trapping/detrapping, but also the weight is modified directly by persistent photocurrent effects under UV-light stimulation. Representative forms of synaptic plasticity, including inhibitory and excitatory postsynaptic currents, frequency-dependent characteristics, short-term to long-term plasticity transitions, and summation effects, are successfully demonstrated. In particular, optoelectronic synergetic modulation leads to reconfigurable excitatory and inhibitory synaptic behaviors, which provides a promising way to achieve the homeostatic regulation of synaptic weights. Moreover, the analogue channel conductance with 100 states is used as the weight update rule to perform MNIST handwritten digit recognition, using system-level LeNet-5 convolutional neural network simulations. The network shows a high recognition accuracy of 95.99% and good tolerance to noisy input patterns. This study highlights the commercial potential of mature optoelectronic InGaZnO transistor technology in edge neuromorphic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.