Abstract

Nanoscale laser sources with downscaled device footprint, high energy efficiency, and high operation speed are pivotal for a wide array of optoelectronic and nanophotonic applications ranging from on-chip interconnects, nanospectroscopy, and sensing to optical communication. The capability of on-demand lasing output with reversible and continuous wavelength tunability over a broad spectral range enables key functionalities in wavelength-division multiplexing and finely controlled light-matter interaction, which remains an important subject under intense research. In this study, we demonstrate an electrically controlled wavelength-tunable laser based on a CdS nanoribbon (NR) structure. Typical "S"-shaped characteristics of pump power dependence were observed for dominant lasing lines, with concomitant line width narrowing. By applying an increased bias voltage across the NR device, the lasing resonance exhibits a continuous tuning from 510 to 520 nm for a bias field in the range 0-15.4 kV/cm. Systematic bias-dependent absorption and time-resolved photoluminescence (PL) measurements were performed, revealing a red-shifted band edge of gain medium and prolonged PL lifetime with increased electric field over the device. Both current-induced thermal reduction of the band gap and the Franz-Keldysh effect were identified to account for the modification of the lasing profile, with the former factor playing the leading role. Furthermore, dynamical switching of NR lasing was successfully demonstrated, yielding a modulation ratio up to ∼21 dB. The electrically tuned wavelength-reversible CdS NR laser in this work, therefore, presents an important step toward color-selective coherent emitters for future chip-based nanophotonic and optoelectronic circuitry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call