Abstract

We present the design, guided by theory to eighth order, and the first evaluation of a Fourier transform ion cyclotron resonance (FT-ICR) compensated trap. The purpose of the new trap is to reduce effects of the nonlinear components of the trapping electric field; those nonliner components introduce variations in the cyclotron frequency of an ion depending on its spatial position (its cyclotron and trapping mode amplitudes). This frequency spread leads to decreased mass resolving power and signal-to-noise. The reduction of the spread of cyclotron frequencies, as explicitly modeled in theory, serves as the basis for our design. The compensated trap shows improved signal-to-noise and at least a threefold increase in mass resolving power compared to the uncompensated trap at the same trapping voltage. Resolving powers (FWHH) as high as 1.7 x 10(7) for the [M + H](+) of vasopressin at m/z 1084.5 in a 7.0-tesla induction can be obtained when using trap compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.