Abstract
The advantages of Silicon-on-Insulator (SO) devices over bulk Silicon devices are well known (speed, radiation hardened, packing density, latch up free CMOS,). In recent years, much effort has been made to form a thin, buried insulating layer just below the active device region. Several approaches are being developed to fabricate such a buried insulating layer. One viable approach is by high dose, high energy oxygen implantation directly into the silicon wafer surface (1-3). With proper implant and annealing conditions, a thin stoichiometric buried oxide with a good crystalline quality silicon overlayer can be formed on which an epitaxial layer can be grown and functional devices and circuits built. As SO1 circuits become market viable, mass production tools and techniques are being developed and evaluated. Of particular interest here is the evaluation of high current oxygen implantation with rapid thermal processing on the electrical characteristics of the oxide-silicon interfaces, the silicon overlayer and the thermally grown oxide on the top surface using measurements on gated diodes and guarded capacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.