Abstract

BackgroundElectrochemotherapy is an effective approach in local tumour treatment employing locally applied high-voltage electric pulses in combination with chemotherapeutic drugs. In planning and performing electrochemotherapy a multidisciplinary expertise is required and collaboration, knowledge and experience exchange among the experts from different scientific fields such as medicine, biology and biomedical engineering is needed. The objective of this study was to develop an e-learning application in order to provide the educational content on electrochemotherapy and its underlying principles and to support collaboration, knowledge and experience exchange among the experts involved in the research and clinics.MethodsThe educational content on electrochemotherapy and cell and tissue electroporation was based on previously published studies from molecular dynamics, lipid bilayers, single cell level and simplified tissue models to complex biological tissues and research and clinical results of electrochemotherapy treatment. We used computer graphics such as model-based visualization (i.e. 3D numerical modelling using finite element method) and 3D computer animations and graphical illustrations to facilitate the representation of complex biological and physical aspects in electrochemotherapy. The e-learning application is integrated into an interactive e-learning environment developed at our institution, enabling collaboration and knowledge exchange among the users. We evaluated the designed e-learning application at the International Scientific workshop and postgraduate course (Electroporation Based Technologies and Treatments). The evaluation was carried out by testing the pedagogical efficiency of the presented educational content and by performing the usability study of the application.ResultsThe e-learning content presents three different levels of knowledge on cell and tissue electroporation. In the first part of the e-learning application we explain basic principles of electroporation process. The second part provides educational content about importance of modelling and visualization of local electric field in electroporation-based treatments. In the third part we developed an interactive module for visualization of local electric field distribution in 3D tissue models of cutaneous tumors for different parameters such as voltage applied, distance between electrodes, electrode dimension and shape, tissue geometry and electric conductivity. The pedagogical efficiency assessment showed that the participants improved their level of knowledge. The results of usability evaluation revealed that participants found the application simple to learn, use and navigate. The participants also found the information provided by the application easy to understand.ConclusionThe e-learning application we present in this article provides educational material on electrochemotherapy and its underlying principles such as cell and tissue electroporation. The e-learning application is developed to provide an interactive educational content in order to simulate the "hands-on" learning approach about the parameters being important for successful therapy. The e-learning application together with the interactive e-learning environment is available to the users to provide collaborative and flexible learning in order to facilitate knowledge exchange among the experts from different scientific fields that are involved in electrochemotherapy. The modular structure of the application allows for upgrade with new educational content collected from the clinics and research, and can be easily adapted to serve as a collaborative e-learning tool also in other electroporation-based treatments such as gene electrotransfer, gene vaccination, irreversible tissue ablation and transdermal gene and drug delivery. The presented e-learning application provides an easy and rapid approach for information, knowledge and experience exchange among the experts from different scientific fields, which can facilitate development and optimisation of electroporation-based treatments.

Highlights

  • Electrochemotherapy is an effective approach in local tumour treatment employing locally applied high-voltage electric pulses in combination with chemotherapeutic drugs

  • In the third part we developed an interactive module for visualization of local electric field distribution in 3D tissue models of cutaneous tumors for different parameters such as voltage applied, distance between electrodes, electrode dimension and shape, tissue geometry and electric conductivity

  • The e-learning application we present in this article provides educational material on electrochemotherapy and its underlying principles such as cell and tissue electroporation

Read more

Summary

Introduction

Electrochemotherapy is an effective approach in local tumour treatment employing locally applied high-voltage electric pulses in combination with chemotherapeutic drugs. Electrochemotherapy is an effective approach in tumor treatment employing locally applied high-voltage electric pulses in combination with chemotherapeutic drugs which enter tumor cells after their membrane has been electroporated [1,2]. Electroporation is a phenomenon of cell membrane permeability increase due to local delivery of short and sufficiently intense voltage pulses via appropriate electrodes to the target cells and tissues [3,4]. In order to cause structural changes in cell membrane magnitude of local electric field need to achieve the critical reversible threshold value (Erev). The phenomenon is reversible until the magnitude of local electric field reaches the irreversible threshold value Eirrev, which causes permanent damages of the cell membrane. The key role in electroporation effectiveness plays the local electric field, which can be directly modified by the amplitude of delivered electric pulses and electrodes used for electric pulse

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.