Abstract

In this paper, we have extended the granular mechanics approach to derive an elasto-plastic stress–strain relationship. The deformation of a representative volume of the material is generated by mobilizing particle contacts in all orientations. Thus, the stress–strain relationship can be derived as an average of the mobilization behavior of these local contact planes. The local behavior is assumed to follow a Hertz–Mindlin’s elastic law and a Mohr–Coulomb’s plastic law. Essential features such as continuous displacement field, inter-particle stiffness, and fabric tensor are discussed. The predictions of the derived stress–strain model are compared to experimental results for sand under both drained and undrained triaxial loading conditions. The comparisons demonstrate the ability of this model to reproduce accurately the overall mechanical behavior of granular media and to account for the influence of key parameters such as void ratio and mean stress. A part of this paper is devoted to the study of anisotropic specimens loaded in different directions, which shows the model capability of considering the influence of inherent anisotropy on the stress–strain response under a drained triaxial loading condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.