Abstract

An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System (INS) is provided in this paper. By experiencing two more positions with tilt attitudes than those experienced in a conventional six-position method, not only constant biases, scale factor errors, and misalignment errors, but also g-dependent biases can be calibrated. Field tests indicate that, after the calibration and compensation of the g-dependent biases, both a latitude error and a longitude error remain within a small range over time. In contrast, by using the conventional six-position method, a latitude error is several times larger and a longitude error diverges rapidly over time. Compared with the six-position method, accuracy of the dual-axis rotational INS is significantly improved more than 50% by the eight-position self-calibration method. The self-calibration method is feasible both in static and over a ship at the dockside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.