Abstract

The robustness of iterative formula as well as its computational efficiency is the essential characteristic of interest for effective reliability analysis of structures by first order reliability method (FORM). A robust and efficient iterative algorithm termed as finite-based Armijo search direction (FAL) method is proposed in the present study for FORM-based structural reliability analysis. A finite-step size is proposed using the Armijo rule and sufficient descent condition to achieve the stabilization of the FORM algorithm. The FAL is adaptively adjusted based on the information obtained from the iterative algorithm at each iteration and Armijo rule. The robustness and efficiency of the proposed FAL method is elucidated using several problems. The results obtained by the proposed method are compared with various existing reliability methods based on steepest descent search direction. The results of the numerical study indicate that the FAL approach is more robust and efficient than the other existing FORM schemes and improves the robustness of FORM formula. Thus, the FAL can be successfully implemented as a robust FORM-based iterative reliability analysis procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.