Abstract
Attribute reduction plays an important role in knowledge discovery and data mining. Confronted with data characterized by the interval and missing values in many data analysis tasks, it is interesting to research the attribute reduction for interval-valued data with missing values. Uncertainty measures can supply efficient viewpoints, which help us to disclose the substantive characteristics of such data. Therefore, this paper addresses the attribute reduction problem based on uncertainty measure for interval-valued data with missing values. At first, an uncertainty measure is provided for measuring candidate attributes, and then an efficient attribute reduction algorithm is developed for the interval-valued data with missing values. To improve the efficiency of attribute reduction, the objects that fall within the positive region are deleted from the whole object set in the process of selecting attributes. Finally, experimental results demonstrate that the proposed algorithm can find a subset of attributes in much shorter time than existing attribute reduction algorithms without losing the classification performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have