Abstract

Wireless sensor networks (WSN) play a very important role in providing real-time data access for big data and IoT application. The open deployment, energy constraint, and lack of centralized administration makes WSN very vulnerable to various kinds of malicious attacks. In WSN, identifying malicious sensor device and eliminating their sensed information play very important roles for mission critical applications. Standard cryptography and authentication schemes cannot be directly used in WSN because of the resource constraint nature of sensor devices. Thus, energy efficient and low latency methodology is required for minimizing the impact of malicious sensor devices. This paper presents a secure and load balanced routing (SLBR) scheme for heterogeneous clustered-based WSN. SLBR present better trust-based security metric that overcomes the problem when sensor keep oscillating for good to bad state and vice versa, and also balance load among CH. Thus, they aid in achieving better security, packet transmission, and energy efficiency performance. Experiments are conducted to evaluate the performance of proposed SLBR model over existing trust-based routing model, namely exponential cat swarm optimization (ECSO). The result attained shows SLBR models attain better performance than ECSO in terms of energy efficiency (i.e., network lifetime considering first sensor device death and total sensor device death), communication overhead, throughput, packet processing latency, malicious sensor device misclassification rate, and identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call