Abstract

FPGA-based time-to-digital converters (TDCs) are required to be accurate, linear, and fast, while at the same time employing a reduced number of resources. Pushing these requirements to the limit is challenging, although it is constantly required by many applications. This article presents a dual-mode tapped-delay-line (TDL)—propagating 1’s and 0’s in alternating measurement cycles—architecture for a field-programmable gate array (FPGA)-based TDC that complies with the mentioned specifications. The dead-time of the proposed TDC is reduced to one system clock cycle by using a toggling input stage and a dual-mode counter-based encoder. To improve the TDC linearity, the TDL sampling sequence is tuned separately for each operating mode. The presented architecture employs a low-resources dual-mode combinatory encoder of one- and zero-counters to remove the bubbles and cover both operating modes. A dual-mode bin-width calibration has been carried out to improve the TDC performance in each mode. The proposed architecture has been implemented on a Xilinx Artix-7 FPGA. Experimental results have shown a differential nonlinearity (DNL) within [−0.71 1.05] least significant bit (LSB) and an integral nonlinearity (INL) within [−0.85 0.86] LSB for the propagation of 1’s. DNL and INL are within [−0.73 1.06] LSB and [−1.17 0.04] LSB, respectively, for the propagation of 0’s. The LSB size is 22.1 ps and the TDC precision is 22.35 ps. A comparison with recently published state-of-the-art FPGA-based TDCs is provided at the end of the article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.