Abstract

The blocking job shop scheduling problem (BJSS) is a version of the classical job shop scheduling with no intermediate buffer between machines. The BJSS is known to be NP-hard in the strong sense. A known way to solve such a problem is to use the Tabu Search algorithm (TS) which is a higher level heuristic procedure for solving optimization problems, designed to guide other methods to escape the trap of local optimality. However, the use of the classical TS neighborhood on BJSS problem produces infeasible solutions in most cases (98% of cases). This leads to waste valuable time in exploring infeasible solutions. To overcome this drawback, we propose a new tabu search neighborhood based on reconstruction strategy. This neighborhood consists to remove arcs causing the infeasibility and rebuild the neighbor solutions by using heuristics. Experiments on the reference benchmark instances show that the TS algorithm using the proposed neighborhood improves most of the known results in the literature and gives new upper bounds for more than 52 benchmarks in both BJSS cases (BJSS with Swap and BJSS no-Swap). Moreover, the proposed approach reaches much faster the optimal solution for most of the optimally solved benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.