Abstract

ABSTRACTIn this study, we propose an efficient split-step compact finite difference (SSCFD) method for computing the coupled Gross–Pitaevskii (CGP) equations. The coupled equations are divided into two parts, nonlinear subproblems and linear ones. Commonly, the nonlinear subproblems could be integrated directly and accurately, but it fails when the time-dependent potential cannot be integrated exactly. In this case, the midpoint and trapezoidal rules are applied approximately. At the same time, the split order is not reduced. For the linear ones, compact finite difference cannot be designed directly. To circumvent this problem, a linear transformation is introduced to decouple the system, which can make the split-step method be used again. Additionally, the proposed SSCFD method also holds for the coupled nonlinear Schrödinger (CNLS) system with time-dependent potential. Finally, numerical experiments for CGP equations and CNLS equations are well simulated, conservative properties and convergence rates are demonstrated as well. It is shown from the numerical tests that the present method is efficient and reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call