Abstract
The development of Internet of Things leads to an increase in edge devices, and the traditional cloud is unable to meet the demands of the low latency of numerous devices in edge area. On the hand, the media delivery requires high-quality solution to meet ever-increasing user demands. The edge cloud paradigm is put forward to address the issues, which facilitates edge devices to acquire resources dynamically and rapidly from nearby places. However, in order to complete as many tasks as possible in a limited time to meet the needs of users, and to complete the consistency maintenance in as short a time as possible, a two-level scheduling optimization scheme in an edge cloud environment is proposed. The first-level scheduling is by using our proposed artificial fish swarm-based job scheduling method, most jobs will be scheduled to edge data centers. If the edge data center does not have enough resource to complete, the job will be scheduled to centralized cloud data center. Subsequently, the job is divided into same-sized tasks. Then, the second-level scheduling, considering balance load of nodes, the edge cloud task scheduling is proposed to decrease completion time, while the centralized cloud task scheduling is presented to reduce total cost. The experimental results show that our proposed scheme performs better in terms of minimizing latency and completion time, and cutting down total cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.