Abstract

A highly efficient synthetic route, based on the quantitative reaction between amine and isocyanate functionalities, was used successfully for the synthesis of hyperbranched polymers and dendritic building blocks based on urea linkages. The thermal decomposition of 3,5-diamino benzoyl azide or 5-amino isophthaloyl azide generated in situ the corresponding phenyl isocyanates, which were then polymerized to give wholly aromatic hyperbranched polyureas. Hyperbranched polyurea with amine chain ends was soluble in common organic solvents. The degree of branching, as calculated with 1H NMR, was 0.55. Diethyl 5-amino isophthalate and Boc-protected 5-amino isophthaloyl azide were used for the successful stepwise synthesis of dendritic wedges based on urea linkages. The thermal generation of the isocyanate functionality with gaseous nitrogen as the side product and its quantitative reaction with amine groups were the salient features of this convergent synthesis. This eliminated the use of chromatographic purification, an inherent part of other convergent growth approaches, and made it a very efficient synthetic route for the synthesis of dendritic wedges. The products were characterized by 1H NMR, 13C NMR, and electron spray mass spectroscopy (ESMS) techniques. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1295–1304, 2001

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.