Abstract

An efficient electrode material (Fe (II)S-GQDs) has been prepared by co-doping of sulfur and iron atoms with Graphene quantum dots. A top down synthesis method including a facile and one-pot hydrothermal was used to develop high capacity and good stability electrode material by selecting ferrous sulphate powder (FeSO4.7H2O) and graphene oxide (GO) as a precursor material. The results obtained from TEM measurements reveal the size alters from micrometer graphene sheets of GO to nano-meter dots for GQDs and Fe (II)S-GQDs. The electrochemical studies reveal that Fe(II) S doped GQDs can exhibit a reversible redox reaction with excellent specific capacitance of 476.2 F/g as compared to that of GQDs (143F/g). It has been found that there is an improvement in electrical conductivity and electron transfer in addition to the largest charge storage capacity. More remarkably, the doped electrode material shows a small charge transfer resistance (Rct) value (30 Ω) in case of Fe(II)S-GQDs as compared to GQDs (2.5 kΩ) due to fast diffusion of ion and electron between working electrodes and electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call