Abstract

Fatigue fracture in ductile materials, e.g. metals, is caused by cyclic plasticity. Especially regarding the high numbers of load cycles, plastic material models resolving the full loading path are computationally very demanding. Herein, a model with particularly small computational effort is presented. It provides a macroscopic, phenomenological description of fatigue fracture by combining the phase-field method for brittle fracture with a classic durability concept. A local lifetime variable is obtained, which degrades the fracture resistance progressively. By deriving the stress-strain path from cyclic material characteristics, only one increment per load cycle is needed at maximum. The model allows to describe fatigue crack initiation, propagation and residual fracture and can reproduce Paris behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.