Abstract
PurposeMany practical problems in engineering require fast, accurate numerical results. In particular, in cyclic plasticity or fatigue simulations, the high number of loading cycles increases the computation effort and time. The purpose of this study is to show that the return mapping technique in the framework of unconventional plasticity theories is a good compromise between efficiency and accuracy in finite element analyses.Design/methodology/approachThe accuracy of the closest point projection method and the cutting plane method implementations for the subloading surface model are discussed under different loading conditions by analyzing the error as a function of the input step size and the efficiency of the algorithms.FindingsMonotonic tests show that the two different implicit integration schemes have the same accuracy and are in good agreement with the solution obtained using an explicit forward Euler scheme, even for large input steps. However, the closest point projection method seems to describe better the evolution of the similarity centre in the cyclic loading analyses.Practical implicationsThe purpose of this work is to show two alternative implicit integration schemes of the extended subloading surface method for metallic materials. The backward Euler integrations can guarantee a good description of the material behaviour and, at the same time, reduce the computational cost. This aspect is particularly important in the field of low or high cycle fatigue, because of the large number of cycles involved.Originality/valueA detailed description of both the cutting plane and closest point projection methods is offered in this work. In particular, the two integrations schemes are compared in terms of accuracy and computation time for monotonic and cyclic loading tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.