Abstract

The technique of video copy-move forgery (CMF) is commonly employed in various industries; digital videography is regularly used as the foundation for vital graphic evidence that may be modified using the aforementioned method. Recently in the past few decades, forgery in digital images is detected via machine intellect. The second issue includes continuous allocation of parallel frames having relevant backgrounds erroneously results in false implications, detected as CMF regions third include as the CMF is divided into inter-frame or intra-frame forgeries to detect video copy is not possible by most of the existing methods. Thus, this research presents the dual deep network (DDN) for efficient and effective video copy-move forgery detection (VCMFD); DDN comprises two networks; the first detection network (DetNet1) extracts the general deep features and second detection network (DetNet2) extracts the custom deep features; both the network are interconnected as the output of DetNet1 is given to DetNet2. Furthermore, a novel algorithm is introduced for forged frame detection and optimization of the falsely detected frame. DDN is evaluated considering the two benchmark datasets REWIND and video tampering dataset (VTD) considering different metrics; furthermore, evaluation is carried through comparing the recent existing model. DDN outperforms the existing model in terms of various metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.