Abstract
Images are often affected by different kinds of noise while acquiring, storing and transmitting it. Even the datasets gathered by the various image acquiring devices would be contaminated by noise. Hence, there is a need for noise reduction in the image, often called Image De-noising and thereby it becomes the significant concerns and fundamental step in the area of image processing. During image de-noising, the big challenge before the researchers is removing noise from the original image in such a way that most significant properties like edges, lines, etc., of the image, should be preserved. There were various published algorithms and techniques to de-noise the image and every single approach has its own limitations, benefits, and assumptions. This paper reviews the noise models and presents a comparative analysis of various de-noising filters that works for color images with single and mixed noises. It also suggests the best filter for color that involve in producing a high-quality color image. The metrics like PSNR, Entropy, SSIM, MSE, FSIM, and EPI are considered as image quality assessment metric
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.