Abstract

In this article, an efficient spatiotemporal video error concealment (EC) based on motion vector (MV) recovery and a pixel reconstruction (PR) method is proposed. The pixel-based motion vector with partition (PMVP) is modified by using Mahalanobis distance (MD) rather than Euclidean distance (ED) for recovering MVs, as MD uses standard deviation and covariance of available pixels. Further, the MD gives more accuracy for non-square cluster compared to ED. This modified pixel-based motion vector with partition (MPMVP) algorithm is further upgrade by two different strategies. First, by using voting priority of available MVs based on the probabilities of similar directions. Second, by considering separate horizontal and vertical directions of available MVs in voting priority. For pixel reconstruction, modified spiral pixel reconstruction (MSPR) algorithm based on directional edge recovery method using minimum and maximum Mahalanobis distance from available pixels of surrounding MBs is proposed. Mahalanobis distance approach is most optimized similarity measure technique compared to other distance measurement approach to obtained lost motion vectors. These proposed EC techniques are compared with existing EC techniques like, SPR EC using ED, PMVP based EC with ED, and MV Interpolation by Zhou's method for various packet loss rates (PLRs) as 3%, 7%, 16%, 20% and quantization parameters (QPs) as 20, 24, 28, 32, 36. For total average in PLR of 3%, 7%, 16% and 20%, MSPR is having better PSNR compared to PMVP by 2.516, 2.29, 2.06 and 2.02 dB, respectively; and compared to SPR by 0.796, 0.718, 0.643 and 0.631 dB, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.