Abstract

The conjugate gradient (CG) method is one of the most popular methods for solving large-scale unconstrained optimization problems. In this paper, a new modified version of the CG formula that was introduced by Polak, Ribière, and Polyak is proposed for problems that are bounded below and have a Lipschitz-continuous gradient. The new parameter provides global convergence properties when the strong Wolfe-Powell (SWP) line search or the weak Wolfe-Powell (WWP) line search is employed. A proof of a sufficient descent condition is provided for the SWP line search. Numerical comparisons between the proposed parameter and other recent CG modifications are made on a set of standard unconstrained optimization problems. The numerical results demonstrate the efficiency of the proposed CG parameter compared with the other CG parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.