Abstract

Microcalcifications are tiny deposits of calcium located in breast tissue. They appeared as very small highlighted regions in comparison with their surrounding tissue. Spatial non linear enhancement can be applied for microcalcification detection. However, efficiency of a such approach depends on breast density: in case of extreme breast density, the contrast between microcalcification's details and their surrounding tissue is attenuated leading to a limitation of spatially based approaches. In that case, frequency analysis such as wavelet based analysis can be more relevant for dissociating microcalcifications. The main goal of Computer Aided Detection systems (CAD) is to detect breast cancer at an early stage for all breast density classes by using entropies to enhance and then detect microcalcification details. Accordingly, we combine our approach a spatial Automatic Non Linear Stretching (ANLS) and Shannon Entropy based Wavelet Coefficient Thresholding (SE_WCT). Validation of the proposed approach is done on the Mammographic Image Analysis Society (MIAS) database. The evaluation of the contrast is based on the Second-Derivative-Like measure of enhancement(SDME). Accordingly, it yields to a mean SDME of 78.8dB on the whole database. The performance metric for evaluating our proposed CAD is the Receiver Operating Characteristic(ROC) curve and the free-response ROC (FROC). An area under the ROC curve Az = 0.92 is obtained as well as 97.14 % of True Positives (TP) with 0,48 False positives per image (FP).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.