Abstract

Purpose – The purpose of this paper is to obtain semi-analytical solutions of similarity solutions for the nano boundary layer flows with Navier boundary condition. The similarity solutions of viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface are investigated. Design/methodology/approach – In this work, the governing partial differential equations are transformed to a nonlinear ordinary differential equation by using some proper similarity transformations. Then an efficient semi-analytical method, the Laplace Adomian decomposition method (LADM) is applied to obtain semi-analytical solutions of the similarity solutions in both of viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface. To improve the accuracy and enlarges the convergence domain of the obtained results by the LADM, the study has combined it with Padé approximation. Findings – Accuracy and efficiency of the presented method are illustrated and denoted through the tables and figures. Also the effects of the suction parameter λ and slip parameter K on the fluid velocity and on the tangential stress are investigated. Originality/value – The similarity solutions of the governing partial differential equation are obtained analytically by using an efficient developed method, namely the Laplace Adomian decomposition-Padé method. The analytic solutions of nonlinear ordinary differential equation are constructed for both of viscous flows over a two-dimensional stretching surface and an axisymmetric stretching surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.