Abstract
SUMMARY The vibration of a fluid-filled crack is considered to be one of the most plausible source mechanisms for the long-period events and volcanic tremors occurring around volcanoes. As a tool for the quantitative interpretation of source process of such volcanic seismic signals, we propose a method to numerically simulate the dynamic response of a fluid-filled crack. In this method, we formulate the motions of the fluid inside and the elastic solid outside of the crack, using boundary integrals in the frequency domain and solve the dynamic interactions between the fluid and the elastic solid using the point collocation method. The present method is more efficient compared with the time-domain finite difference method, which has been used in simulations of a fluid-filled crack and enables us to study the dynamics of a fluid-filled crack over a wide range of physical parameters. The method also allows us direct calculation of the attenuation quality factor of the crack resonance, which is an indispensable parameter for estimating the properties of the fluid inside the crack. The method is also designed to be flexible to many applications, which may be encountered in volcano seismology, and thus, extensions of the method to more complicated problems are promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.