Abstract

This paper applies near-infrared spectroscopy (NIRS) and multiple chemometrics to efficiently distinguish the origins of fresh tea leaves. The key components were obtained using the partial least squares discriminant analysis (PLS-DA) method. PLS, synergy interval PLS (siPLS), principal component analysis (PCA), genetic algorithm (GA), and their combination methods were used to establish NIRS non-destructive discrimination models. Then, the practical application was examined using external samples. The study identified nine key components (variable importance for the projection (VIP) > 1): epigallocatechin, epicatechin, total sugar, water extracts, total catechins, gallocatechin gallate, tea polyphenols, gallocatechin, and epigallocatechin gallate. Of the six NIRS models, the siPLS-GA model that used 37 spectral data points produced the best results (Rp2 = 0.9706, RMSEP = 0.0772, RPD = 6.59). This model had a prediction accuracy of 96.67% for the prediction set samples and 93.33% for the external samples. It offers a rapid, precise, and non-invasive approach to monitor and regulate the illicit trade of fresh tea leaves, thereby guaranteeing the authenticity of Enshi Yulu products from the processing source and fostering the long-term prosperity and stability of the Enshi Yulu tea industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.