Abstract

The normal procedure for a physician-physicist team designing a treatment plan for multiarc stereotactic radiosurgery is the trial-and-error approach of changing the collimator size and the location of the isocenter of radiation and viewing the isodose curves on two-dimensional computed tomography (CT) or magnetic resonance imaging (MRI) image planes. Automatic optimization procedures have also been used to optimize beam weight or beam size. However, either process is very time consuming. To improve the speed of the dose calculation, a random sampling method has been proposed. Unfortunately, the sampled values of an objective function are different from one sample to another. Such a sampling method cannot be used in automatic optimization because the next move in an optimization process is based on the current and past objective function values. To this end, an adaptive method based on the size of the collimators is proposed and used to determine a small volume in the shape of a hollow sphere for which the dose is calculated. With an appropriate choice of an adaptive hollow sphere, the objective function calculated based on such a hollow sphere is the same as that calculated with the traditional three-dimensional (3-D) cube matrix. However, with the new adaptive method, the speed of calculating a dose can be improved by a factor of 4 to a factor of 100. Because of the improvement in the speed of calculating a treatment dose, the new adaptive hollow sphere method for calculating a treatment dose can be used routinely in designing a treatment plan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.