Abstract

In this paper, a wavelet-based approximation method is introduced for solving the Newell-Whitehead (NW) and Allen-Cahn (AC) equations. To the best of our knowledge, until now there is no rigorous Legendre wavelets solution has been reported for the NW and AC equations. The highest derivative in the differential equation is expanded into Legendre series, this approximation is integrated while the boundary conditions are applied using integration constants. With the help of Legendre wavelets operational matrices, the aforesaid equations are converted into an algebraic system. Block pulse functions are used to investigate the Legendre wavelets coefficient vectors of nonlinear terms. The convergence of the proposed methods is proved. Finally, we have given some numerical examples to demonstrate the validity and applicability of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.