Abstract
Generally, the inconvenience of establishing the mathematical optimization models directly and the conflicts of preventing simultaneous optimization among several objectives lead to the difficulty of obtaining the optimal solution of a practical engineering problem with several objectives. So in this paper, a generate-first-choose-later method is proposed to solve the multiobjective engineering optimization problems, which can set the number of Pareto solutions and optimize repeatedly until the satisfactory results are obtained. Based on Frisch’s method, Newton method, and weighed sum method, an efficient hybrid algorithm for multiobjective optimization models with upper and lower bounds and inequality constraints has been proposed, which is especially suitable for the practical engineering problems based on surrogate models. The generate-first-choose-later method with this hybrid algorithm can calculate the Pareto optimal set, show the Pareto front, and provide multiple designs for multiobjective engineering problems fast and accurately. Numerical examples demonstrate the effectiveness and high efficiency of the hybrid algorithm. In order to prove that the generate-first-choose-later method is rapid and suitable for solving practical engineering problems, an optimization problem for crash box of vehicle has been handled well.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have