Abstract

As the feature sizes and the operating charges continue to be scaled down, multi-bit soft errors are becoming more critical in SRAM designs of a few nanometers. In this paper, we propose an efficient error detection technique to reduce the size of parity bits by applying a 2D bit-interleaving technique to 3D bit-partitioned SRAM devices. Our proposed bit-interleaving technique uses only 1/K (where K is the number of dies) parity bits, compared with conventional bit-interleaving structures. Our simulation results show that 1/K parity bits are needed with only a 0.024-0.036% detection error increased over that of the existing bit-interleaving method. It is also possible for our technique to improve the burst error coverage, by adding more parity bits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.