Abstract
Network coding has been demonstrated to be able to improve the performance of P2P content distribution. However, it is vulnerable to pollution attacks where malicious peers can flood the network with corrupted blocks easily, leading to substantial performance degradation. Moreover, existing corruption detection schemes for network coding are not well suited to P2P systems. Effective scheme to detect the corruption and identify the attacker is required to thwart such attacks. In this paper, we propose an efficient ECC-based mechanism for securing network coding-based P2P content distribution, namely ESNC, which includes an efficient network coding signature scheme and an identity-based malicious peer identification scheme. The two schemes cooperate to thwart pollution attacks on network coding effectively in P2P networks, not only detecting corrupted blocks on-the-fly efficiently, but also precisely identifying all the malicious peers quickly. ESNC is mainly based on elliptic curve cryptography (ECC) and can provide high level of security. It incurs significantly less computation and communication overheads than other comparable state-of-the-art schemes for P2P systems. ESNC can work with arbitrary topologies, as it is the case in P2P networks. Security analysis demonstrates that ESNC can resist hash collision attacks, signature forgery attacks, and collusion attacks with arbitrary number of colluding malicious peers. Simulation results show that ESNC effectively limits the corruption spread and identifies all the malicious peers in a short time under different practical settings.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have