Abstract

The rectangular packing problem aims to seek the best way of placing a given set of rectangular pieces within a large rectangle of minimal area. Such a problem is often constructed as a quadratic mixed-integer program. To find the global optimum of a rectangular packing problem, this study transforms the original problem as a mixed-integer linear programming problem by logarithmic transformations and an efficient piecewise linearization approach that uses a number of binary variables and constraints logarithmic in the number of piecewise line segments. The reformulated problem can be solved to obtain an optimal solution within a tolerable error. Numerical examples demonstrate the computational efficiency of the proposed method in globally solving rectangular packing problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.