Abstract
Wireless Sensor Networks (WSNs) are consistently gathering environmental weather data from sensor nodes on a random basis. The wireless sensor node sends the data via the base station to the cloud server, which frequently consumes immoderate power consumption during transmission. In distribution mode, WSN typically produces imprecise measurable or missing data and redundant data that influence the whole network of WSN. To overcome this complexity, an effective data prediction model was developed for decentralized photovoltaic plants using hybrid Harris Hawk Optimization with Random Forest algorithm (HHO-RF) primarily based on the ensemble learning approach. This work is proposed to predict the precise data and minimization of error in WSN Node. An efficient model for data reduction is proposed based on the Principal Component Analysis (PCA) for processing data from the sensor network. The datasets were gathered from the Tamil Nadu photovoltaic power plant, India. A low cost portable wireless sensor node was developed for collecting PV plant weather data using Internet of Things (IoT). The experimental outcomes of the proposed hybrid HHO-RF approach were compared with the other four algorithms, namely: Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF) and Long Short Term Memory (LSTM) algorithm. Results show that the determination coefficient (R2), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values of the HHO-RF model are 0.9987, 0.0693, 0.2336 and 0.15881, respectively. For the prediction of air temperature, the RMSE of the proposed model is 3.82 %, 3.84% and 6.92% model in the lowest, average and highest weather days. The experimental outcomes of the proposed hybrid HHO-RF model have better performance compared to the existing algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have