Abstract
The paper presents Echo State Network (ESN) as classifier to diagnose the abnormalities in mammogram images. Abnormalities in mammograms can be of different types. An efficient system which can handle these abnormalities and draw correct diagnosis is vital. We experimented with wavelet and Local Energy based Shape Histogram (LESH) features combined with Echo State Network classifier. The suggested system produces high classification accuracy of 98% as well as high sensitivity and specificity rates. We compared the performance of ESN with Support Vector Machine (SVM) and other classifiers and results generated indicate that ESN can compete with benchmark classifier and in some cases beat them. The high rate of Sensitivity and Specificity also signifies the power of ESN classifier to detect positive and negative case correctly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have