Abstract

To improve the particle erosion resistance of mechanical surfaces, a bionic coupling method inspired by the morphology and flexibility of desert scorpion (Androctonus australis) carapace was proposed in this study. The finite element method based on ANSYS/FLUENT was applied to examine the erosion resistance of a bionic V-shaped model. Subsequently, an experimental research was carried out to compare the particle erosion resistance performance of three types of specimens, namely, smooth, bionic V-shaped, and bionic V-shaped and flexibility coupling. Surface erosion microstructure was also examined under a stereoscopic microscope and a scanning electron microscope to characterize erosive damage. The anti-erosion property of the coupling and V-shaped specimens increased by approximately 74.7 and 57.4% compared to that of the smooth specimen in a 10-min test. The mechanism of particle erosion resistance is also discussed in detail. The particle impact marks that were distributed on the surfaces of both of the V-shaped and coupling specimens were regular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call