Abstract

In this work, an efficient boundary element formulation has been presented for three-dimensional steady-state heat conduction analysis of fiber reinforced composites. The cylindrical shaped fibers in the three-dimensional composite matrix are represented by a system of curvilinear line elements with a prescribed diameter which facilitates efficient analysis and modeling together with the reduction in dimensionality of the problem. The variations in the temperature and flux fields in the circumferential direction of the fiber are represented in terms of a trigonometric shape function together with a linear or quadratic variation in the longitudinal direction. The resulting integrals are then treated semi-analytically which reduces the computational task significantly. The computational effort is further minimized by analytically substituting the fiber equations into the boundary integral equation of the material matrix with hole, resulting in a modified boundary integral equation of the composite matrix. An efficient assembly process of the resulting system equations is demonstrated together with several numerical examples to validate the proposed formulation. An example of application is also included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call