Abstract
System reliability analysis involving multiple failure modes is challenging when performance functions are associated with time-consuming codes. This paper aims to enhance the efficiency of system reliability analysis by reducing the number of evaluations of time-consuming models. To achieve that, an adaptive Kriging-based method is proposed. In order to develop the method, a quantificational error measure of Kriging models (i.e. surrogate models of performance functions associated with each failure mode) is first derived. The stepwise accuracy-improvement strategy (SAIS) is then modified to solve system reliability problems, and the modified SAIS is called SAIS-SYS. The method for system reliability analysis is finally developed based on the derived error measure and SAIS-SYS. In the proposed method, Kriging models, i.e. the surrogate models of original performance functions, are adaptively refreshed according to SAIS-SYS until the associated error measure is smaller than a prescribed threshold. After Kriging models meet with accuracy requirement, the system failure probability can be obtained through a random simulation method and no additional evaluations of original performance functions is needed. The accuracy, efficiency and robustness of the proposed method are validated by four examples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have