Abstract

Vehicular networking is a new field that is expected to be widely adopted in the near future. One of the key applications inherent to this novel communications paradigm is content delivery to on-board users. In this paper we focus specifically on the design of a robust and efficient broadcast-based content delivery system. In order to reduce the content delivery time to a minimum, we first optimize performance by seeking the optimal packet size for content delivery. This goal is achieved by combining analytical and simulation results, and considering both static and mobile receivers at different distances from the transmitter. Moreover, we develop a full architecture that integrates the FLUTE protocol with different Forward Error Correction (FEC) schemes to achieve efficient content distribution. Through real experiments in a vehicular testbed we demonstrate that Raptor codes are the best option among the different FEC schemes available. In addition, as vehicle speed and/or distance from the broadcasting antenna increases, performance results highlight that adopting efficient FEC schemes becomes mandatory to achieve efficient and reliable data content delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.