Abstract

A novel image encryption algorithm in streaming mode is proposed which exhaustively employs an entire set of DNA complementary rules alongwith one dimensional chaotic maps. The proposed algorithm is highly efficient due to encrypting the subset of digital image which contains 92.125 % of information. DNA addition operation is carried out on this MSB part. The core idea of the proposed scheme is to scramble the whole image by means of piecewise linear chaotic map (PWLCM) followed by decomposition of image into most significant bits (MSB) and least significant bits (LSB). The logistic sequence is XORed with the decoded MSB and LSB parts separately and finally these two parts are combined to get the ciphered image. The parameters for PWLCM, logistic map and selection of different DNA rules for encoding and decoding of both parts of an image are derived from 128-bit MD5 hash of the plain image. Simulated experimental results in terms of quantitative and qualitative ways prove the encryption quality. Efficiency and robustness against different noises make the proposed cipher a good candidate for real time applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call