Abstract

This paper proposes a new preconditioning technique based on a restricted additive Schwarz (RAS) approach to improve the efficiency of the discontinuous Galerkin surface integral equation method. The RAS preconditioning is implemented efficiently using an oct-tree structure derived from the multilevel fast multipole algorithm (MLFMA) and is constructed using near-field matrices associated with boxes at the finest level. Compared to existing domain decomposition preconditioning methods based on subdomain block matrices, the proposed RAS preconditioning significantly reduces computation time and memory requirements, while providing scalable convergence for iterative solutions. Numerical experiments are presented to demonstrate the performance of the proposed cost-effective preconditioning technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.