Abstract

AbstractA discontinuous Galerkin (DG) surface integral equation method is proposed for electromagnetic scattering from targets with the impedance boundary condition (IBC). We present electric field integral equation (EFIE), magnetic field integral equation (MFIE), and self‐dual integral equation formulations for the problem and study their numerical performance. On the basis of the results of these experiments, DG is developed for EFIE and MFIE (DG‐EFIE and DG‐MFIE). The convergence of the iterative solutions and the solution accuracy of DG‐EFIE and DG‐MFIE are further investigated for a wide range of surface impedances. The numerical performance of these formulations is found to be nearly complementary with respect to the surface impedance. The capability of the proposed DG solution strategy for calculating scattering from large multiscale IBC targets is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call