Abstract
Complex-valued neural network is a type of neural networks, which is extended from real number domain to complex number domain. Fully complex extreme learning machine (CELM) is an efficient algorithm, which owes faster convergence than the common complex backpropagation (CBP) neural networks. However, it needs more hidden neurons to reach competitive performance. Recently, an efficient learning algorithm is proposed for the single-hidden layer feed-forward neural network which is called the upper-layer-solution-aware algorithm (USA). Motivated by USA, an efficient algorithm for complex-valued neural networks through training input weights (GGICNN) has been proposed to train the split complex-valued neural networks in this paper. Compared with CELM and CBP, an illustrated experiment has been done in detail which observes the better generalization ability and more compact architecture for the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.