Abstract

To cope with uncertainty in semiconductor wafer fabrication facilities (fabs), scheduling methods are required to produce quick real-time responses. They should be well tuned to track the changes of a production environment to obtain good operational performance. This paper presents an efficient adaptive dispatching method (ADM) with parameters determined dynamically by real-time state information of fabs. ADM is composed of a dispatching rule considering both batch and non-batch processing machines to obtain improved fab-wide performance, several feature selection methods to determine key scheduling-related real-time state information, and a linear regression model to find the relations between the weighting parameters of the dispatching rule and the determined real-time state information. A real fab simulation model is used to demonstrate the proposed method. The simulation results show that ADM is adaptive to changing environment with better performance than a number of commonly used rules (such as FIFO, EDD, CR, LPT, LS, SRPT, and SPT) and an adaptive dispatching rule that considers only real-time ratio of hot jobs to the number of all jobs in a fab and the ratio of jobs with one third of photo steps left to the number of all jobs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.