Abstract

Uncertainty in semiconductor fabrication facilities (fabs) requires scheduling methods to attain quick real-time responses. They should be well tuned to track the changes of a production environment to obtain better operational performance. This paper presents an adaptive dispatching rule (ADR) whose parameters are determined dynamically by real-time information relevant to scheduling. First, we introduce the workflow of ADR that considers both batch and non-batch processing machines to obtain improved fab-wide performance. It makes use of such information as due date of a job, workload of a machine, and occupation time of a job on a machine. Then, we use a backward propagation neural network (BPNN) and a particle swarm optimization (PSO) algorithm to find the relations between weighting parameters and real-time state information to adapt these parameters dynamically to the environment. Finally, a real fab simulation model is used to demonstrate the proposed method. The simulation results show that ADR with constant weighting parameters outperforms the conventional dispatching rule on average; ADR with changing parameters tracking real-time production information over time is more robust than ADR with constant ones; and further improvements can be obtained by optimizing the weights and threshold values of BPNN with a PSO algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.