Abstract

Power dissipation at the network level to improve lifespan without degrading the bandwidth and collaboration is a fundamental impediment to effective spectral efficiency in wireless sensor networks (WSNs). This issue is made much more difficult. Wireless energy transfer (WET) for energizing remote sensor nodes gained interest. This research explores an FDD-based on-demand scenario with many relays where a transmitter is powered by direct and relayed links. A threshold is set for transmission energy & channel quality to decide whether the broadcasting can be efficient (for spectrum utilization) or the packet would not arrive at its destination. The network model offers an energy-efficient scheduling strategy to decide whether to transmit information or not depending on the stored higher energy and network status. An energy-aware polling-based medium access control (MAC) mechanism, composite energy, and information first (CEDF) has also been developed to fine-tune packet delivery ratio by utilizing datagrams and energy packages to set polling prioritization. Computational simulations indicate that energy relayed and the recommended energy-efficient scheduled technique decrease the system’s active power losses supporting all theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call