Abstract

A new ‘two-phase’ simulation method with which to accurately predict the melting curve is proposed. The method requires, as a starting configuration, generating a two-phase coexistence state by employing a suitable ensemble. Examining a change in volume ratio of the two phases upon varying temperature (pressure) under a fixed pressure (temperature) allows us to determine the phase transition point. The Clausius–Clapeyron relationship can then be implemented as a guide to predict the nearby phase transition point. The method was applied to determine the solid–liquid phase boundary of the modified Lennard–Jones system. A better accuracy, as that achieved by the non-equilibrium relaxation method (Asano Y, Fuchizaki K. J Phys Soc Jpn. 2017;86:025001), was obtained but with much less computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.