Abstract

Aleatory and epistemic uncertainties usually coexist within a mechanistic model, which motivates the hybrid structural reliability analysis considering random and interval variables in this paper. An introduction of the interval variable requires one to recursively evaluate embedded optimizations for the extremum of a performance function. The corresponding structural reliability analysis, hence, becomes a rather computationally intensive task. In this paper, physical characteristics for potential optima of the interval variable are first derived based on the Karush-Kuhn-Tucker condition, which is further programmed as a simulation procedure to pair qualified candidate samples. Then, an outer truncation boundary provided by the first-order reliability method is used to link the size of a truncation domain with the targeted failure probability, whereas the U function is acted as a refinement criterion to remove inner samples for an increased learning efficiency. Given new samples detected by the revised reliability-based expected improvement function, an adaptive Kriging surrogate model is determined to tackle the hybrid structural reliability analysis. Several numerical examples in the literature are presented to demonstrate applications of this proposed algorithm. Compared to benchmark results provided by the brute-force Monte Carlo simulation, the high accuracy and efficiency of this proposed approach have justified its potentials for the hybrid structural reliability analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.