Abstract

Interval variables are commonly encountered in design, especially in the early design stages when data are limited. Thus, reliability analysis (RA) should deal with both interval and random variables and then predict the lower and upper bounds of reliability. The analysis is computationally intensive, because the global extreme values of a limit-state function with respect to interval variables must be obtained during the RA. In this work, a random field approach is proposed to reduce the computational cost with two major developments. The first development is the treatment of a response variable as a random field, which is spatially correlated at different locations of the interval variables. Equivalent reliability bounds are defined from a random field perspective. The definitions can avoid the direct use of the extreme values of the response. The second development is the employment of the first-order reliability method (FORM) to verify the feasibility of the random field modeling. This development results in a new random field method based on FORM. The new method converts a general response variable into a Gaussian field at its limit state and then builds surrogate models for the autocorrelation function and reliability index function with respect to interval variables. Then, Monte Carlo simulation is employed to estimate the reliability bounds without calling the original limit-state function. Good efficiency and accuracy are demonstrated through three examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call